

X = F, Cl, Br, I

BASIC CONCEPTS

1. Haloalkanes or alkyl halides are the compounds which have the general formula RX, where R is an alkyl or substituted alkyl group and X is a halogen (F, Cl, Br, I). Likewise, haloarenes or aryl halides are the compounds containing halogens attached directly to an aromatic ring. They have the general formula ArX (where Ar is phenyl, or substituted phenyl).

Classification:

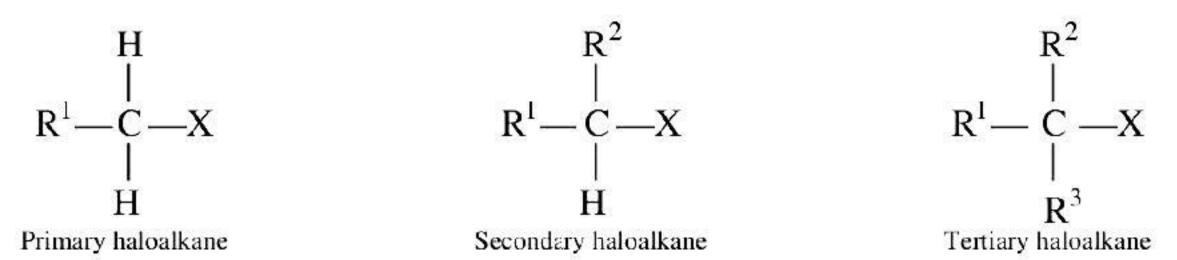
(a) Classification based on the number of halogen atoms: These may be classified as mono, di, or polyhalogen compounds depending on whether they contain one, two or more halogen atoms in their structures. For example,

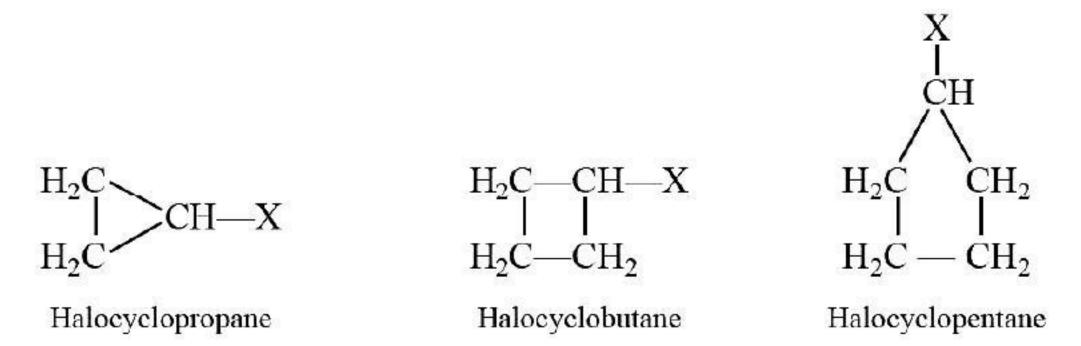
X = F, Cl, Br, I

Dihalogen compounds may be further classified as discussed below:

Gem-dihalides: The two halogen atoms are attached to the same carbon atom in gem-dihalides.
 For example,

Vic-dihalides: In these compounds, the two halogen atoms are attached to adjacent carbon atoms.
 For example,





(b) Classification based on hybridisation of carbon atom:

- (i) Halogen compounds in which halogen is bonded to sp^3 hybridised carbon. This class includes:
 - (a) Haloalkanes or alkyl halides: They are the halogen compounds of saturated hydrocarbon. Their general formula is $C_nH_{2n+1}X$. They are further classified as primary haloalkane, secondary haloalkane or tertiary haloalkane according to whether the halogen atom is bonded to primary, secondary or tertiary carbon atom.

If in R—X, R is an alicyclic, i.e., cyclic aliphatic hydrocarbons such as cyclopropane, cyclobutane, cyclopentane, etc., they are known as halocycloalkane or cycloalkylhalide. For example,

(b) Allylic halides: In these compounds, halogen is bonded to allylic carbon, i.e., to the sp^3 hybridised carbon atom next to a carbon–carbon double bond. Examples are:

(c) Benzylic halides: In these halides, the halogen atom is bonded to an sp^3 hybridised carbon atom next to an aromatic ring, i.e., to a benzylic carbon. For example,

Benzylic halides may be primary, secondary or tertiary.

- (ii) Halogen compounds in which halogen is bonded to sp^2 or sp hybridised carbon.
 - (a) Vinylic halides: In these halides, halogen is bonded to one of the carbon atoms of a vinylic carbon, i.e., carbon–carbon double bond which is sp^2 hybridised. The examples are :

(b) Aryl halides: In these halides, the halogen atom is directly bonded to carbon atom of aromatic ring. These are called haloarene or aryl halides, e.g., halobenzene.

2. Chemical Properties of Haloalkanes

The chemical reactions of haloalkanes can be divided into following types:

- (a) Nucleophilic substitution reactions
- (b) Dehydrohalogenation or β -elimination reactions
- (c) Reaction with metals
- (a) Nucleophilic substitution reactions: When an atom or group of atoms is replaced by a nucleophile, the reaction is called nucleophilic substitution reaction.

In haloalkanes, the halogen atom is attached to the carbon atom. As the halogen atom is more electronegative than carbon, the bond between carbon and halogen is polar in character.

$$>_{C}^{\delta+}$$
 $-X$

Due to the presence of partial positive charge on the carbon atom, the nucleophiles can attack on electron deficient carbon thereby resulting in the displacement of weaker nucleophile, the halide ion.

Nucleophilic Substitution of Alkyl halides (R—X)

$$+ KOH(aq) \longrightarrow R \longrightarrow OH + KX$$

$$Alcohol$$

$$+ NaOR' \longrightarrow R \longrightarrow CH + KX$$

$$Ether$$

$$+ KCN(alc) \longrightarrow R \longrightarrow CH + KX$$

$$Alkyl$$

$$cyanide$$

$$+ AgCN \longrightarrow R \longrightarrow CH + AgX$$

$$Alkyl isocyanide$$

$$+ KNO_2 \longrightarrow R \longrightarrow OH \longrightarrow OH + KX$$

$$Alkyl nitrite$$

$$+ AgNO_2 \longrightarrow R \longrightarrow OH \longrightarrow OH + KX$$

$$Alkyl nitrite$$

$$+ AgNO_2 \longrightarrow R \longrightarrow OH \longrightarrow OH + KX$$

$$Alkyl nitrite$$

$$+ AgNO_2 \longrightarrow R \longrightarrow OH \longrightarrow OH + KX$$

$$Alkyl nitrite$$

$$+ AgNO_2 \longrightarrow R \longrightarrow OH \longrightarrow OH + KX$$

$$Alkyl nitrite$$

$$+ AgXOH \longrightarrow R \longrightarrow CH \longrightarrow AgX$$

$$Ester$$

$$+ LiAlH_4 \longrightarrow R \longrightarrow H$$

$$+ NH_3 \longrightarrow H$$

$$+ NH_3$$

(b) Elimination reactions: When haloalkane with β -hydrogen atom is heated with ethanolic potassium hydroxide, there is elimination of hydrogen atom from β -carbon atom and a halogen atom from α -carbon atom. As a result, an alkene is formed. Since β-hydrogen atom is involved in elimination, it is often called β -elimination reaction.

$$CH_3$$
— CH_2 — $Cl + KOH(alc.)$ $\xrightarrow{\Delta}$ $CH_2 = CH_2 + KCl + H_2O$

76 Chemistry–XII: Term–1

(c) Reaction with metals

(i) Reaction with magnesium

$$CH_3$$
— CH_2 — $Br + Mg$
 $\xrightarrow{Dry \text{ ether}}$
 CH_3 — CH_2 — $MgBr$
Alkyl magnesium bromide

(ii) Reaction with sodium (Wurtz reaction)

$$R - X + 2Na + X - R \xrightarrow{Dry \text{ ether}} R - R + 2NaX$$

$$CH_3 - CH_2 - CI + 2Na + CI - CH_2 - CH_3 \xrightarrow{Dry \text{ ether}} CH_3 - CH_2 - CH_2 - CH_3 + 2NaCI$$

$$Ethyl \text{ chloride}$$

$$CH_3 - CH_2 - CH_3 - CH_2 - CH_3 + 2NaCI$$

$$R - R + 2NaX$$

$$CH_3 - CH_2 - CH_3 - CH_2 - CH_3 + 2NaCI$$

$$R - R + 2NaX$$

$$R - R$$

3. Preparation of Haloarenes

(a) By direct halogenation of benzene

(b) From diazonium salts

$$NH_2$$

$$NaNO_2 + HC1$$

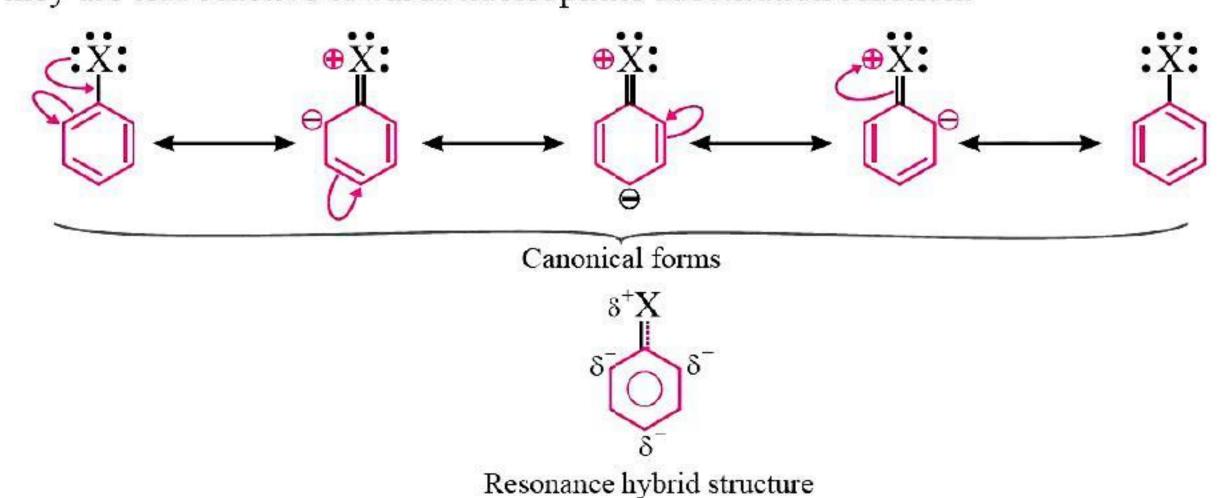
$$273-278 \text{ K}$$
Benzene diazonium chloride

$$\begin{array}{c|c} Cu_2Cl_2/HCl \\ \hline \\ Cu_2Br_2/HBr \\ \hline \\ Benzene \\ diazonium chloride \\ \end{array} \begin{array}{c|c} Cu_2Cl_2/HCl \\ \hline \\ Cu_2Br_2/HBr \\ \hline \\ \\ \hline \\ \\ \\ \end{array} \begin{array}{c|c} Cl + N_2 \\ \hline \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c|c} Sandmeyer's \\ reactions \\ \hline \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c|c} F + RCl + N_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c|c} F + BF_3 + NaCl + N_2 \\ \hline \\ \\ \\ \\ \\ \end{array}$$

Physical Properties of Haloarenes

(a) Melting and boiling points: Boiling point of isomeric dihalobenzenes are very nearly same. However p-isomer have higher melting point as compared to their ortho and meta-isomers. It is due to symmetry of para-isomers that fits in crystal lattice better as compared to ortho and meta isomers.

(b) Nature of C—X bond: The C—X bond is polar as 'X' is more electronegative than carbon. The carbon has partial positive charge whereas halogen has slight negative charge because shared pair of electrons are more towards halogen atoms.

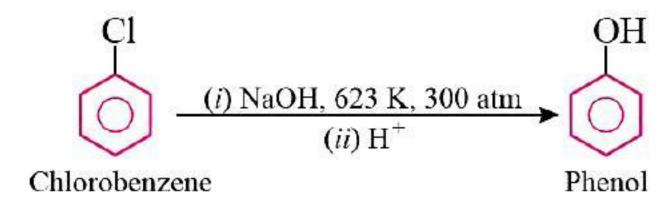

$$-C-X$$

Dipole moment of CH₃Cl is higher than CH₃F due to greater bond length in C—Cl bond.

- 5. Chemical Properties of Haloarenes:
 - (a) Nucleophilic substitution reactions of haloarenes

Aryl halides are extremely less reactive towards nucleophilic substitution reactions due to the following reasons:

(i) Resonance effect: In arythalides C—X bond acquires a partial double bond character due to resonance. As a result C—X bond cleavage in aryl halides is difficult than alkyl halides and therefore they are less reactive towards nucleophilic substitution reaction.

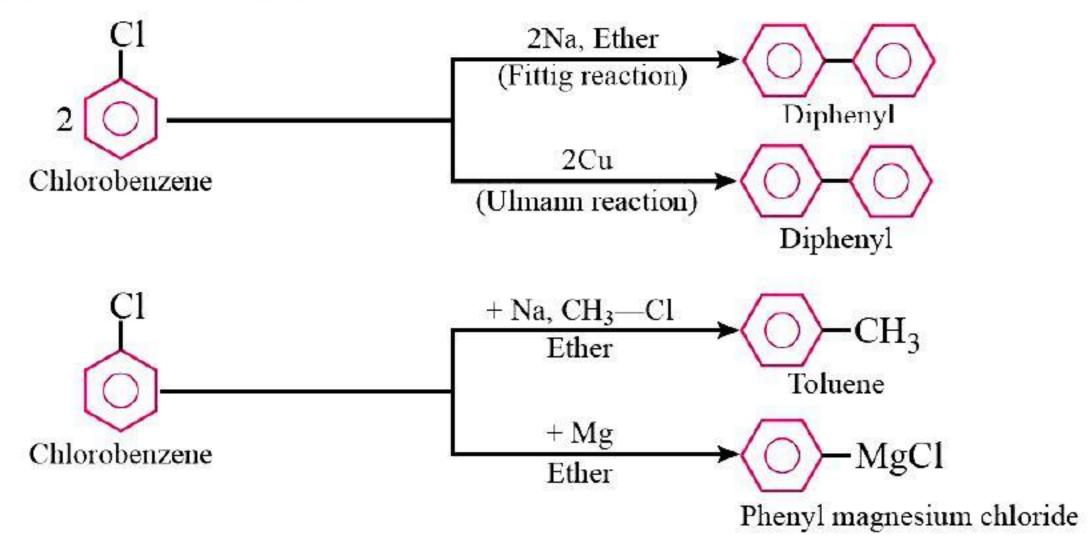

(ii) Difference in hybridisation:

$X = sp^2$ hybrid carbon $R = X = Sp^3$ hybrid carbon $R = X = Sp^3$

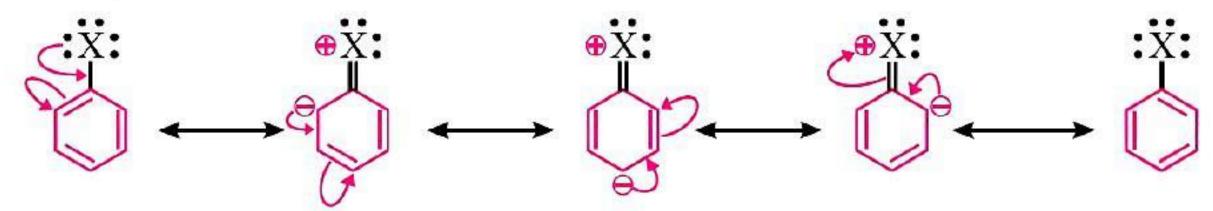
- (iii) Instability of phenyl cation: In case of haloarenes, the phenyl cation formed as a result of self-ionisation will not be stabilised by resonance and therefore S_N1 mechanism is ruled out.
- (iv) Because of the possible repulsion, it is less likely for the electron-rich nucleophile to approach electron-rich areas.

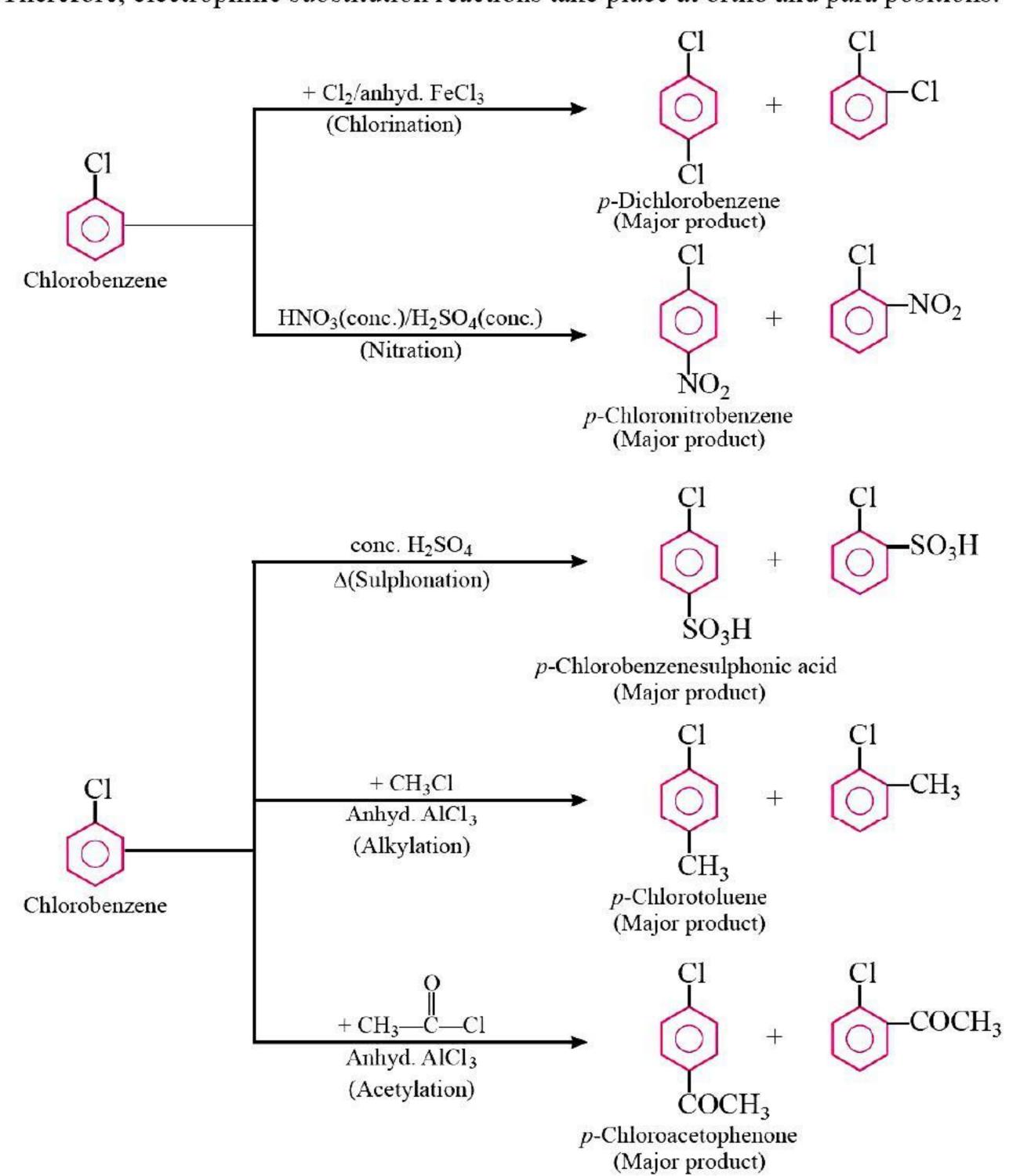
However, at high temperature and pressure several nucleophilic substitution reactions are carried out.

• Substitution by —OH group (Dow's process)


Substitution by —CN group

Substitution by —NH₂ group


C1
$$\frac{NH_3}{CuO, 475 \text{ K}, 60 \text{ atm}}$$
 Aniline


(b) Reactions with metals

(c) Electrophilic substitution reactions of haloarenes

Due to resonance, the electron density increases more at ortho and para positions than at meta positions. Therefore, electrophilic substitution reactions take place at ortho and para positions.

6. Mechanism of Nucleophilic Substitution in Alkyl Halides

The nucleophilic substitution reactions in alkyl halides can take place by either of two mechanisms: $S_N 1$ and $S_N 2$

Substitution nucleophilic unimolecular (S_N1)

It takes place in two steps and the reaction is of first order. In the first step, alkyl halide undergoes slow heterolysis to produce carbonium ion (an intermediate) and a halide ion. In the second step, nucleophile rapidly combines with the carbonium ion to complete the substitution reaction.

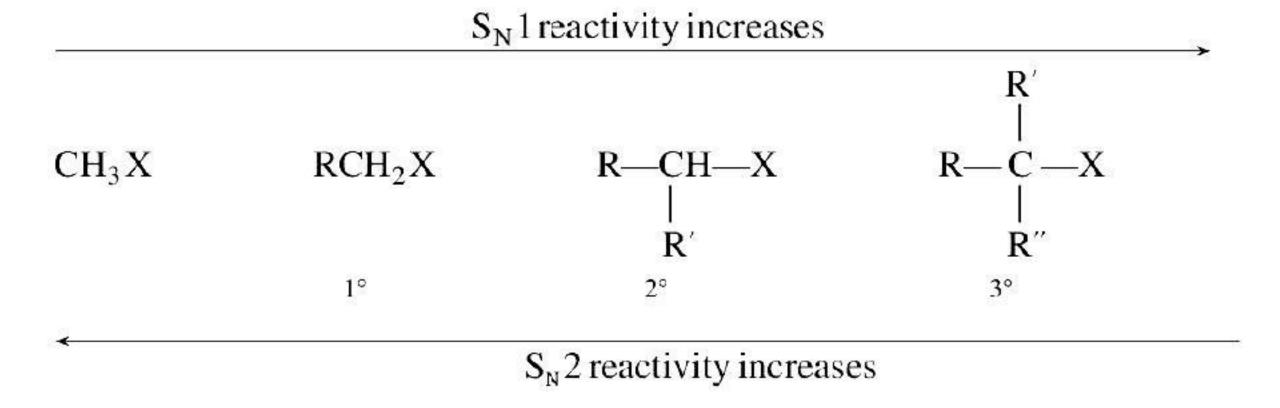
Step 1:
$$R' \longrightarrow C \longrightarrow X$$
 $R'' \longrightarrow C \longrightarrow X$
 $R'' \longrightarrow C^+ + X^ R'' \longrightarrow C$
Carbonium ion (intermediate)

Step 2:
$$R'' > C^+ + Nu^ R'' > C-Nu$$

 S_N1 reactions of optically active halides are accompanied by racemisation. This is because the carbonium formed in the slow step being sp^2 hybridised is planar (achiral) therefore, the attack of nucleophile on it can occur from both the faces with equal ease giving a mixture containing two enantiomers in equal amounts. This may be illustrated by hydrolysis of optically active 2-bromobutane, which gives (\pm) butan-2-ol.

$$\begin{array}{c} H_{3}C\\ H_{3}CH_{2}C\\ (+) \text{ or } (-) \text{ 2-Bromobutane} \end{array} + Br \\ H_{3}CH_{2}C\\ (+) \text{ or } (-) \text{ 2-Bromobutane} \end{array}$$

$$\begin{array}{c} CH_{3}\\ CH_{2}CH_{3}\\ HO \\ \hline \\ CH_{2}CH_{3} \end{array} + \overline{DH} \\ \hline \\ CH_{2}CH_{3} \\ \hline \\ CH_{2}CH_{3} \end{array}$$


$$\begin{array}{c} CH_{3}\\ H_{3}C\\ H_{3}CH_{2}C\\ \hline \\ CH_{2}CH_{3} \end{array} + \overline{DH} \\ \hline \\ CH_{2}CH_{3} \end{array}$$

Substitution nucleophilic bimolecular $(S_N 2)$

It takes place in one step and the reaction is of second order. In this process the nucleophile attacks the partially positive carbon of the C—X bond of the substrate, alkyl halide, from the back side of the C—X bond and the leaving group, X⁻, departs simultaneously.

 S_N^2 reactions of optically active halides are accompanied by inversion of configuration. This is because the attack of nucleophile occurs from a direction opposite to the one from where the halogen atom leaves.

The order of reactivity of alkyl halides towards S_N1 and S_N2 reactions is as follows:

An alkyl group at the α-carbon, being bigger in size than H atom, tends to block the approach of the nucleophile to carbon due to steric hindrance in S_N^2 mechanism and makes the reaction difficult to occur. In the S_N1 mechanism, a carbocation is formed in the first, slow step. The more stable the carbocation, more easily is the product formed. Tertiary alkyl halides undergo S_N1 reaction very fast because of the high stability of tertiary carbocation.

$$\overset{\oplus}{\operatorname{CH}}_3 < \operatorname{R} \overset{\oplus}{\operatorname{CH}}_2 < \operatorname{R} \overset{\oplus}{\operatorname{CH}} \overset{\oplus}{\operatorname{-R'}} < \operatorname{R} \overset{\oplus}{\operatorname{-R'}} \overset{\oplus}{\operatorname{-R'}}$$

Primary allylic and benzylic halides show higher reactivity in S_N1 reactions than other primary halides. This is due to stabilisation of allylic and benzylic carbocation intermediates by resonance.

$$CH_{2} \xrightarrow{CH} \stackrel{\bigoplus}{CH_{2}} \xrightarrow{CH_{2}} CH \xrightarrow{CH_{2}} CH \xrightarrow{CH_{2}} CH_{2}$$

$$Resonance in allyl carbocation$$

$$CH_{2} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{2}$$

$$CH_{2} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{2}$$

Resonance stabilisation in benzyl carbocation

Thus, primary alkyl halides almost always react predominantly by S_N2 mechanism. Tertiary alkyl halides react predominantly by S_N1 mechanism. Secondary alkyl halides may react by both the mechanisms without much preference. Polar solvents favour S_N1 and non-polar solvents favour S_N2 reactions.

Important Name Reactions

(a) Sandmeyer's Reaction:

Benzene diazonium chloride is converted to chlorobenzene, bromobenzene, cyanobenzene on treatment with CuCl/HCl, CuBr/HBr and CuCN/KCN, respectively.

(b) Finkelstein Reaction: Chloroalkanes or bromoalkanes are converted into corresponding iodoalkanes by treating with sodium iodide dissolved in acetone.

(c) Wurtz Reaction: Alkyl halides react with metallic sodium in the presence of dry ether to form alkanes. This reaction is used for the preparation of higher alkanes. For example,

Wurtz reaction is only useful for the preparation of alkanes containing even number of carbon atoms and not for the alkanes containing odd number of carbon atoms.

(d) Wurtz-Fittig Reaction: Aryl halides when treated with alkyl halide and sodium in dry ether give alkylbenzenes.

(e) Fittig's Reaction: In this reaction two molecules of haloarene combine with metallic sodium in the presence of dry ether to give diphenyl or biphenyl.

$$\bigcirc$$
 C1 + 2Na + C1 \bigcirc Dry ether \rightarrow \bigcirc Diphenyl or biphenyl

(f) Friedel-Crafts Alkylation: Benzene and other aromatic compounds react with alkyl halides in the presence of anhydrous AlCl₃ to form alkyl benzene.

(g) Dow's Process: When chlorobenzene is treated with an aqueous solution of NaOH at 623 K, 300 atm pressure sodium phenoxide is formed which on acidification gives phenol.

Cl ONa OH

$$+ 2\text{NaOH}(aq)$$
 $\xrightarrow{623 \text{ K, } 300 \text{ atm}}$ $\xrightarrow{(-\text{NaCl, } -\text{H}_2\text{O})}$ $\xrightarrow{H^+}$ $\xrightarrow{}$

(h) Hunsdiecker's Reaction: Bromoalkanes are obtained by this method by refluxing silver salts of fatty acids with Br₂ in CCl₄.

R—COOAg + Br₂
$$\xrightarrow{\text{CCl}_4}$$
 R—Br + AgBr + CO₂
CH₃CH₂COOAg + Br₂ $\xrightarrow{\text{CCl}_4}$ CH₃CH₂Br + AgBr + CO₂

This method can be employed to decrease the number of carbon atoms.

Gatterman's Reaction: The reaction of diazonium salts with 'Cu' powder in the presence of corresponding halogen acids is known as Gatterman's reaction.

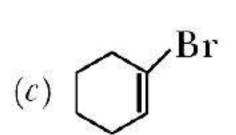
$$O$$
- N_2Cl Cu/HCl O - $Cl + N_2$ O - N_2Cl Cu/HBr O - $Dr + N_2 + IIC$

Distinctions between Pairs of Organic Compounds Containing Halogen

Silver nitrate test: In this test, the halide is warmed with aqueous or alcoholic KOH. The solution is then acidified with dil. HNO₃ followed by addition of AgNO₃ solution.

Alkyl, benzyl and allyl halides give precipitate.

Aryl and vinyl halides do not give precipitate.


It may be noted that the precipitate formed should be insoluble in HNO₃.

MULTIPLE CHOICE QUESTIONS

Choose and write the correct option in the following questions.

1. Which of the following is vinylic halide?

(a)
$$CH_3CH=CHCH_2Br(b)$$
 \bigcirc

The position of Br in the compound in CH₃CH=CHC(Br)(CH₃)₂ can be classified as

[NCERT Exemplar]

- (a) Allyl
- (b) Aryl
- (c) Vinyl
- (d) Secondary
- Which of the following is an example of vic-dihalide?

[NCERT Exemplar]

- (a) Dichloromethane (b) 1,2-dichloroethane (c) Ethylidene chloride(d) Allyl chloride
- Ethylidene chloride is a/an

[NCERT Exemplar]

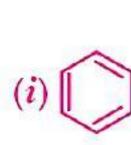
- (a) vic-dihalide
- (b) gem-dihalide
- (c) allylic halide
- (d) vinylic halide
- Which is the correct IUPAC name for CH₃—CH—CH₂—Br?

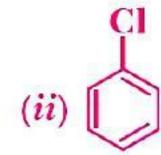
[NCERT Exemplar]

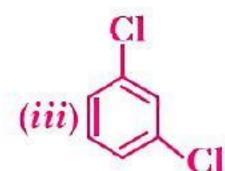
 C_2H_5

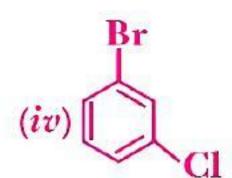
1-Bromo-2-ethylpropane

- (b) 1-Bromo-2-ethyl-2-methylethane
- 1-Bromo-2-methylbutane


(d) 2-Methyl-1-bromobutane


The IUPAC name of the compound




- (a) 4-fluoro-1-methyl-3-nitrobenzene
- (b) 1-fluoro-4-methyl-2-nitrobenzene
- (c) 2-fluoro-5-methyl-1-nitrobenzene
- (d) 4-methyl-1-fluoro-2-nitrobenzene
- Which of the following is most preferred to prepare alkylchloride from alcohol?
 - (a) Concentrated HCl (b) SOCl₂
- (c) PCl₅
- (d) PCl₃
- Arrange the following compounds in the increasing order of their densities.

[NCERT Exemplar]

(a) (i) < (ii) < (iii) < (iv)

- (b) (i) < (iii) < (iv) < (ii)

(c) (iv) < (iii) < (ii) < (i)

(d) (ii) < (iv) < (iii) < (i)

Arrange the following compounds in increasing order of their boiling points.

[NCERT Exemplar]

(i)
$$CH_3$$
 CH—CH₂Br (ii) $CH_3CH_2CH_2CH_2Br$ (iii) H_3C —C—CH₃ | Br

- (a) (ii) < (i) < (iii) (b) (i) < (ii) < (iii) (c) (iii) < (i) < (ii) (d) (iii) < (ii) < (ii)
- 10. Chlorobenzene is formed by reaction of chlorine with benzene in the presence of AlCl₃. Which [NCERT Exemplar] of the following species attacks the benzene ring in this reaction?
 - (a) Cl⁻
- (b) Cl^+
- (c) $AlCl_3$ (d) $[AlCl_4]^-$
- 11. Which reagent will you use for the following reaction?

[NCERT Exemplar]

CH₃CH₂CH₂CH₃ — CH₃CH₃CH₅CH₅CH₅CI + CH₃CH₅CHClCH₃

(a) Cl₂ / UV light

(b) NaCl + H_9SO_4

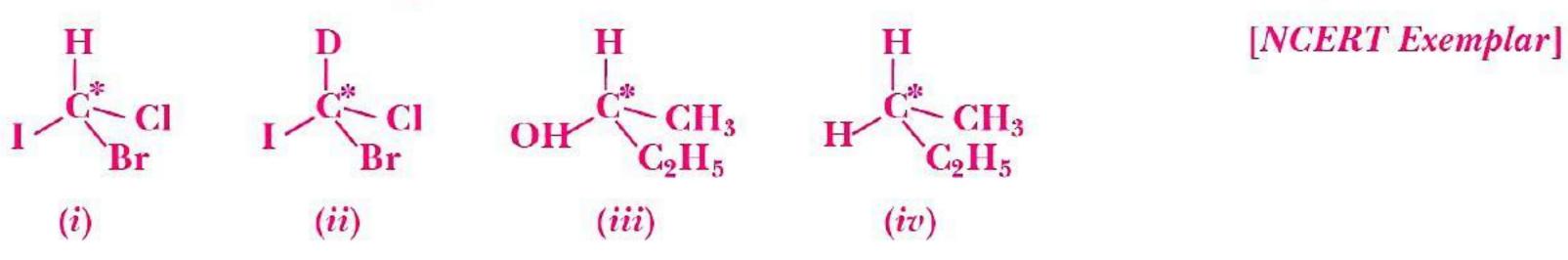
(c) Cl₂ gas in dark

- (d) Cl_2 gas in the presence of iron in dark
- 12. The reagents for the following conversion is/are

$$Br \longrightarrow H = -H$$

(a) Zn/CH₃OH

- (b) alcoholic KOH followed by NaNH₉
- (c) aqueous KOH followed by NaNH₉
- (d) alcoholic KOH
- The order of reactivity of following alcohols with halogen acids is _____


[NCERT Exemplar]

(A)
$$CH_3$$
— CH_2 — CH_2 —OH (B) CH_3 CH $_2$ — CH —OH (C) CH_3 CH $_2$ — C —OH CH $_3$

- (a) (A) > (B) > (C) (b) (C) > (B) > (A) (c) (B) > (A) > (C) (d) (A) > (C) > (B)

CH₃

14. In which of the following molecules carbon atom marked with asterisk (*) is asymmetric?

- (a) (i), (ii), (iii), (iii) (b) (i), (ii), (iii) (c) (ii), (iii), (iv)

- (d) (i), (iii), (iv)
- 15. Which of the following structures is enantiomeric with the molecule (A) given below:

[NCERT Exemplar]

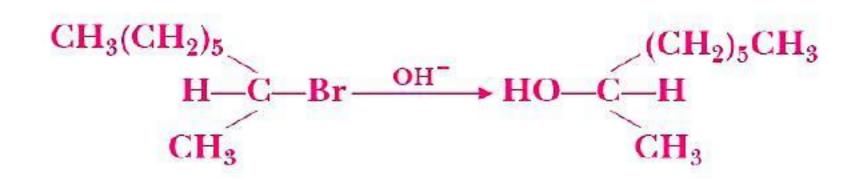
- CH_3

- Two possible stereo-structure of CII₃—CII(OII)COOII which are optically active are called
 - (a) mesomers
- (b) enantiomers
- (c) diastereomers
- (d) atropisomers

17.	Alkyl halides undergoing nucleophilic bimolecular substitution involve						
	(a) retention of config	uration	(b) racemic mixture				
	(c) inversion of config	uration	(d) formation of carbo	tion of carbocation			
18.	Which of the following	g alkyl halides will under	rgo S _N 1 reaction most r	eadily? [NCERT Exemplar]			
	(a) $(CH_3)_3C$ —F	(b) $(CH_3)_3C$ —Cl	(c) $(CH_3)_3C-Br$	$(d) (CH_3)_3C-I$			
19.	For the following (i) I	$^{\Theta}$, (ii) \mathbf{Cl}^{Θ} , (iii) \mathbf{Br}^{Θ} , the in	creasing order of nucl	eophilicity would be:			
	$(a) \mathbf{I}^{\Theta} < \mathbf{Br}^{\Theta} < \mathbf{Cl}^{\Theta}$	$(b) \operatorname{Br}^{\Theta} < \operatorname{Cl}^{\Theta} < \operatorname{I}^{\Theta}$	(c) $Cl^{\Theta} < Br^{\Theta} < I^{\Theta}$	$(d) I^{\Theta} < Cl^{\Theta} < Br^{\Theta}$			
20.	Toluene reacts with a	halogen in the presence	of iron (III) chloride	giving ortho and para halo			
	compounds. The reac	•	<u>·</u>	[NCERT Exemplar]			
	(a) Electrophilic elimin		(b) Electrophilic substitution reaction				
	(c) Free radical addition		(d) Nucleophilic subst				
21.		compounds, which one	The state of the s				
	(a) 1, 1-Dichloro ethyl		(b) cis-1, 2-Dichloroetl	₫i			
99	(c) trans-1, 2-dichloroe		(d) None of these com	•			
42.	(a) ethane	g will have least hindered (b) ethylene	(c) acetylene	(d) hexachloroethane			
92		X 2 2	83.0 D. S.A.	npound C ₅ H ₀ Br formed by			
40.		pent-2-yne respectively		npound C5110Br formed by			
	(a) 1 and 2	(b) 2 and 4	(c) 4 and 2	(d) 2 and 1			
24.	The Cl—C—Cl angle	in 1, 1, 2, 2-tetrachloroe	thene and tetrachloror	nethane will be about			
		(b) 90° and 109.5°		(d) 109.5° and 120°			
25.	The C—H bond distan	nce is longest in					
	(a) C_2H_2	(b) C_2H_4	$(c) C_2H_6$	$(d) C_2H_2Br_2$			
26.	Chlorination of toluene in presence of sunlight and heat and followed by treatment with aqueous						
	NaOH gives (b) h quesel						
	(a) o-cresol(c) 2, 4-dihydroxytolu	020	(b) p-cresol(d) benzoic acid				
27.			8 6				
41.	(a) but-1-ene	ction with alcoholic pot (b) butan-1-ol	(c) but-2-ene	(d) butan-2-ol			
28.		X 22		step involves the addition of			
	(a) H ⁺	(b) Br ⁻	(c) H ⁻	(d) Br ⁺			
29.	When HCl gas is treat	ed with propene in pres	sence of benzoyl perox	ide, it gives			
	(a) 2-chloropropane	(b) allyl chloride	(c) no reaction	(d) n-propyl chloride			
30.	Geometrical isomeris	m is shown by					
	(a) $CH_2 = C (Br)I$	(b) $CH_3CH = C (Br)I$	(c) (CH3)2 C = C (Br)	$I(d) CH_3CH = CCl_2$			
31.		nlorine in presence of su					
	(a) benzyl chloride		No.	(d) o -chlorotoluene			
32.		reacts with HBr obeying					
		(b) cis-but-2-ene	(c) trans-but-2-ene	$(d) (CH_3)_2 C = CH_2$			
33.	Silver benzoate reacts	(b) C ₆ H ₅ COOBr	(c) m-Br-C ₆ H ₄ COOAg	· (d) C LI B··			
21	(a) C ₆ H ₆	V-7/1 = 0 0 0 0	``	, , , , , , , , , , , , , , , , , , , ,			
34.	The reaction involved in the formation of fluoromethane from methyl bromide in presence of silver fluoride is called						
	silver fluoride is calle	a					
	(a) Swarts reaction		ı (c) Sandmeyer reactio	$\operatorname{on}(d)$ Wurtz reaction			
35.	(a) Swarts reaction						
35.	(a) Swarts reaction	(b) Finkelstein reaction					

36.	The number of possible enantiomeric pairs that can be produced during monochlorination of
	2-methylbutane is

- (a) 2
- (b) 3
- (c) 4
- (d) 1


During debromination of meso-dibromobutane, the major compound formed is

- (a) n-butane
- (b) but-1-ene
- (c) cis-but-2-ene
- (d) trans-but-2-ene

(CH₃)₃CMgBr on reaction with D₂O produces

- (a) $(CH_3)_3CD$ (b) $(CH_3)_3COD$ (c) $(CD_3)_3CD$
- (d) (CD)₃COD

The reaction 39.

is described as

- (a) $S_E 2$ reaction (b) $S_N 1$ reaction (c) $S_N 2$ reaction (d) $S_N 0$ reaction

The alkyl halide is converted into alcohol by

(a) addition

(b) substitution

(c) dehydrohalogenation

(d) elimination

The replacement of chlorine of chlorobenzene to give phenol requires drastic conditions but chlorine of 2, 4-dinitrochlorobenzene is readily replaced since

- (a) NO_2 makes the ring electron rich at o-and p.
- (b) NO₉ withdraws electrons from the m-position.
- (c) NO_9 donates electrons at m-position.
- (d) NO₂ withdraws electrons from o-and p-positions.

Aromatic hydrocarbons show mostly

(a) electrophilic addition

(b) nucleophilic addition

(c) electrophilic substitution

(d) nucleophilic substitution

43.
$$C_3H_8 + Cl_2 \xrightarrow{light} C_3H_7Cl + HCl$$

is an example of

(a) substitution

(b) elimination

(c) addition

(d) rearrangement reaction

44. A solution of (+)-2-chloro-2-phenylethane in toluene racemises slowly in the presence of small amount of SbCl₅ due to the formation of

- (a) carbanion
- (b) carbene
- (c) free radical
- (d) carbocation

45. Which of the following is a best example of S_N^2 reaction?

(a)
$$CH_3Br + OH^- \longrightarrow CH_3OH + Br^-$$

(b)
$$(CH_3)_2CHBr + OH^- \longrightarrow (CH_3)_2CHOH + Br^-$$

(c)
$$CH_3CH_2OH \xrightarrow{-H_2O} CH_2=CH_2$$

$$(d)$$
 $(CH_3)_3C$ — $Br + OH^- \longrightarrow (CH_3)_3C$ — $OH + Br^-$

Which of the following possesses highest melting point?

- (a) chlorobenzene
- (b) o-Dichlorobenzene (c) m-Dichlorobenzene (d) p-Dichlorobenzene

47. Which of the following will not give iodoform test?

- (a) ethanol
- (b) ethanal
- (c) isopropyl alcohol
- (d) benzyl alcohol

48. In Friedel-Craft alkylation besides AlCl₃ other reactants are

- (a) $C_6H_6 + NH_3$
- (b) $C_6H_6 + CH_4$ (c) $C_6H_6 + CH_3Cl$ (d) $C_6H_6 + CH_3COCl$

The addition of HBr is easiest with

- (a) $CH_2 = CHCl$
- (b) ClCH = CHCl
- (c) $CH_3CH = CH_2$ (d) $(CH_3)_2C = CH_2$

50.	Which among MeX, I	RCH ₂ X, R ₂ CHX, R ₃ CX i (b) RCH ₂ X	s most reactive to (c) R ₂ CHX	wards S_N 1 reaction? (d) R_3 CX		
51.	Which of the following has highest nucleophilicity?					
	(a) \mathbf{F}^-	$(b) OH^-$	(c) CH_3^-	$(d) NH_9^-$		
59		y of the following alkyl				
04.	(a) $RF > RCl > RBr >$		(b) RF > RBr >			
	(c) $RCl > RBr > RF >$		(d) RI > RBr >			
52			Marine No. 190 (September 1997)	vards electrophilic substitution is		
33.	The decreasing order	of reactivity of the follow	ing compound tow	ards electrophine substitution is		
	0					
	CH	I ₃ OCH ₃		$\mathbf{CF_3}$		
	I	II	III	IV		
	(a) III $>$ I $>$ II $>$ IV	(b) $IV > I > II > III$	(c) I > II > III	> IV (d) II > I > III > IV		
54.		e on treatment with 2: pent-2-yne. The value of		H ₂ followed by treatment with		
	(a) onc	(b) two	(c) three	(d) four		
55.	$\mathbf{C_7H_8} \xrightarrow{3\mathbf{Cl}_2} \mathbf{A} \xrightarrow{\mathbf{Br}_2}$	$\stackrel{/\mathbf{Fe}}{\longrightarrow} \mathbf{B} \stackrel{\mathbf{Zn/HCl}}{\longrightarrow} \mathbf{C}$				
	The compound C is					
	(a) o-bromotoluene			(b) m-bromotoluene		
	(c) p-bromotoluene			ł, 6-trichlorotoluene		
56.	Two isomeric alkenes A and B having molecular formula C_5H_9Cl on adding hydrogen, A give optically inactive compound while B gives a chiral compound. The two isomers are					
	(a) A is 3-chloro-pent-1-ene and B is 4-chloro-pent-2-ene					
	(b) A is 4-chloro-pent-1-ene and B is 2-chloro-pent-2-ene					
	(c) A is 3-chloro-pent-	2-ene and B is 2-chloro-	pent-2-ene			
	(d) A is 1-chloro-pent-	1-ene and B is 5-chloro-	pent-1-ene			
57.	When chlorine is passed through propane in presence of sunlight which of the following					
	products is/are forme					
	(a) PVC			pane (d) Both (b) and (c)		
58.	The number of stereo	isomers of the compour	nd 2-chloro-4-met	hylhex-2-ene is/are		
	(a) 1	(b) 2	(c) 4	(d) 16		
59.		g is an example arylalk				
	(a) Benzyl chloride	(b) Allyl chloride	(c) Chlorobenze	ne $(d) p$ -chlorotoluene		
60.	The product (A) formed in the given reaction is					
		Cl + 2H -	Ni-Al A			
	(a) Diphenyl	(b) Benzene	(c) Iodobenzene	e (d) Toluene		
61		X 4/4	(c) rodobenzene	(a) Torache		
01.	Iodoform on heating	All the second s				
	(a) CH ₃ CHO	(b) CH ₃ COOK	(c) HCOOK	(d) HCHO		
62.	Hydrolysis of 1,1-dic	Set Eller School Artis Janes	/ L MYY MANAT	AN OUT OUT		
	(a) CH_3CH_2OH	(b) CHCl ₃	(c) CH_3COOH	(d) CH ₃ CHO		

(a) formic acid

63. Chloroform on reaction with zinc and HCl gives

(b) chloropicrin (c) methylene chloride (d) phosgene

64.	CH ₃ CH ₉ CHClCH ₃ obtained by chlorination of <i>n</i> -butane will be						
	(a) meso form	(b) racemic form	(c) d -form	(d) l -form			
65. An organic compound on treatment with Br ₂ in CCl ₄ gives bromoderivative of an alken compound will be							
		(b) $CH_3CH = CHCH_3$	(c) $HC \equiv CH$	$(d) CH_2 = CH_2$			
66. The reaction of alkyl halide with RCOOAg produces							
	(a) esters	(b) ethers	(c) aldehydes	(d) ketones			

The addition of propene with HOCl proceeds via the addition of

(a) H⁺ in the first step

(c) OH in the first step

- (b) Cl⁺ in the first step
- (d) Cl⁺ and OH⁻ in a single step

68. An S_N2 reaction at an asymmetric carbon of a compound always gives

- (a) an enantiomer of the substrate
- (b) a product with same optical rotation
- (c) a mixture of diastereomers
- (d) a single stereoisomer

The number of isomers for the compound with molecular formula C₂BrClFI is

(a) 3

(b) 4

- (c) 5
- (*d*) 6

70. In the presence of peroxide, hydrogen chloride and hydrogen iodide do not give anti-Markownikov's addition to alkenes because

- (a) both are highly ionic.
- (b) one is oxidising and the other is reducing.
- (c) one of the step is endothermic in both the cases.
- (d) all the steps are exothermic in both the reactions.

71. Identify the set of reagent/reaction conditions 'X' and 'Y' in the following set of transformations:

$$\begin{array}{c} \mathbf{CH_3CH_2CH_2Br} \xrightarrow{\mathbf{X}} \mathbf{Product} \xrightarrow{\mathbf{Y}} \mathbf{CH_3} \xrightarrow{\mathbf{C}} \mathbf{H} \mathbf{--CH_3} \\ \mathbf{Br} \end{array}$$

- (a) X = dil. aq. NaOH, 20°C; Y = HBr/acetic acid, 20°C
- (b) $X = \text{conc. alc. NaOH, } 80^{\circ}\text{C}; Y = HBr/\text{acetic acid, } 20^{\circ}\text{C}$
- (c) X = dil. aq. NaOH, 20°C; Y = Br₂/CHCl₃, 0°C
- (d) $X = \text{conc. alc. NaOH, } 80^{\circ}\text{C}; Y = \text{Br}_{2}/\text{CHCl}_{3}, 0^{\circ}\text{C}$

72. The reactivity order of halides for dehydrohalogenation is

(a) RF > RCl > RBr > RI

(b) RI > RBr > RCl > RF

(c) RI > RCl > RBr > RI

(d) RF > RI > RBr > RCl

73. Which of the following is known as Sandmeyer Reaction?

- (a) $C_6H_6 + CH_3Cl \xrightarrow{AlCl_3} C_6H_5CH_3$ (b) $C_6H_5OH \xrightarrow{CO_2} C_6H_5(OH)COOH$
- (c) $C_6H_5N_2^+Cl^- \xrightarrow{Cu_2Cl_2} C_6H_5Cl + N_2\uparrow$ (d) $2HCHO \longrightarrow CH_3OH + HCOONa$

74. *n*-propyl chloride on reaction with aqueous KOH gives

- (a) propanol
- (b) propanal
- (c) propane
- (d) propene

75. Which of the following is a free radical substitution reaction?

(a)
$$\bigcirc$$
 CH₃ + Cl₂ $\stackrel{\text{light}}{\longrightarrow}$ \bigcirc CH₂Cl

(b)
$$\bigcirc$$
 + CH₃Cl $\xrightarrow{\text{Anhydrous}}$ \bigcirc CH₂

(c)
$$\bigcirc$$
 CH₂Cl + AgNO₂ \longrightarrow \bigcirc CH₂NO₂

(d)
$$CH_3CHO + HCN \longrightarrow CH_3CH(OH)CN$$

- 76. Which of the following are arranged in the decreasing order of dipole moment?
 - (a) CH₃Cl, CH₃Br, CH₃F

(b) CH₃Cl, CH₅F, CH₅Br

(c) CH₃Br, CH₃Cl, CH₃F

- (d) CH₃Br, CH₃F, CH₃Cl
- Which of the following reaction involves both aryl and alkyl halide?
 - (a) Wurtz reaction

(b) Wurtz fittig reaction

(c) Sandmeyer reaction

- (d) Friedal-Crafts reaction
- 78. Which of the following compounds is not formed when a mixture of methyl bromide and ethyl bromide is treated with sodium metal in the presence of dry ether?
 - (a) butane
- (b) ethane
- (c) propane
- (d) methane
- 79. C-Cl bond of chlorobenzene in comparison to C-Cl bond in methyl chloride is
 - (a) Longer and weaker

(b) Shorter and weaker

(c) Shorter and stronger

- (d) Longer and stronger
- 80. Which of the following undergoes nucleophilic substitution exclusively by S_N1 mechanism?
 - (a) Benzyl Chloride
- (b) Ethyl chloride
- (c) Chlorobenzene
- (d) Isopropyl chloride
- 81. A Grignard reagent may be made by reacting magnesium with
 - (a) Methyl amine
- (b) Diethyl ether
- (c) Ethyl iodide
- (d) Ethyl alcohol
- 82. The conversion of an alkyl halide into an alcohol by aqueous NaOH is classified as

[CBSE 2020 (56/5/1)]

- (a) A dehydrohalogenation reaction
- (b) A substitution reaction

(c) An addition reaction

- (d) A dehydration reaction
- Fitting reaction can be used to prepare
 - (a) Toluene
- (b) Acetophenone (c) Diphenyl
- (d) Chlorobenzene
- 84. Identify the end product (c) is the following sequence:

$$C_2H_5OH \xrightarrow{SOCl_2} (a) \xrightarrow{KCN} (b) \xrightarrow{2OH^-/H^+} (c)$$

(a) Propane

- (a) $C_2H_5CH_2NH_2$ (b) $C_2H_5CONH_2$ (c) $C_2H_5CO_2H$ (d) $C_2H_5NH_2 + HCOOH$
- $CH_3CH_2CH_2Cl \xrightarrow{alc. KOH} B \xrightarrow{HBr} C \xrightarrow{Na/ether} D$
 - In the above reaction, the product D is
 - (b) 2, 3-Dimethylbutane (c) Hexane
- (d) Allyl bromide

- 86. CH_3 —CH=CH— CH_3 + HBr \rightarrow A; 'A' is CH_3
 - (a) CH₃—C—CH₂—CH₃

 CH₂

- (c) CH₃—CH—CH₂—CH₂Br
 CH₂

- (d) BrCH₂—CH—CH₂—CH₃
- Which of the following alcohols will yield the corresponding alkyl chloride on reaction with concentrated HCl at room temperature?
 - (a) CH_3CH_2 — CH_2 —OH

CH₃CH₂—CH—OH

CH₃

CH₃CH₂—CH—CH₂OH CH₃

 $\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \text{CH}_2 \text{---} \text{C---} \text{OH} \\ \text{CH}_3 \end{array}$

Identify the compound Y in the following reaction.

Which of the following is halogen exchange reaction?

- (a) $RX + NaI \longrightarrow RI + NaX$
- $(b) \subset C + HX \longrightarrow C = C$
- (c) R— $OH + HX \xrightarrow{ZnCl_2} R$ — $X + H_9O$

$$(d) \bigcirc \overset{CH_2}{\longleftarrow} X_2 \xrightarrow{Fe} \bigcirc \overset{CH_3}{\longleftarrow} X \xrightarrow{CH_3}$$

90. Which reagent will you use for the following reaction?

CH₃CH₂CH₂CH₃ — CH₃CH₂CH₂CH₂CH₂CH + CH₃CH₂CHClCH₃

(a) Cl₂/UV light

(b) NaCl + H_9SO_4

(c) Cl₂ gas in dark

(d) Cl_2 gas in the presence of iron in dark.

91. The position of –Br in the compound $CH_3CH = CHC(Br)(CH_3)_2$ can be classified as ______.

- (a) Allyl
- (b) Aryl
- (c) Vinyl
- (d) Secondary

92. A primary alkyl halide would prefer to undergo ______.


- (a) $S_N 1$ reaction
- (b) $S_N = c$ reaction (c) α -Elimination
- (d) Racemisation

93. The correct IUPAC name for diethyl bromomethane is

- (a) 1-Bromo-1,1-diethoxyethane
- (b) 3-Bromopentane
- (c) 1-Bromo-1-ethylpropane
- (d) 1-Bromopentane

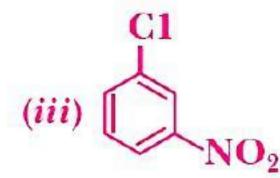
- 94. Reaction of C₆H₅CH₂Br with aqueous sodium hydroxide follows ______.
 - (a) $S_N 1$ mechanism
 - (b) S_N^2 mechanism
 - (c) Any of the above two depending upon the temperature of reaction
 - (d) Saytzeff rule

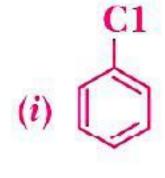
95. Which of the carbon atoms present in the molecule given below are asymmetric?

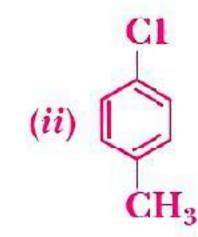
- (a) a, b, c, d
- (b) b, c
- (c) a, d
- (*d*) a, b, c

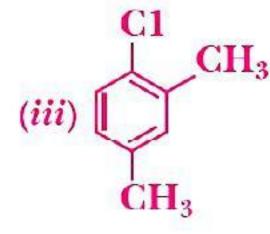
96. Which of the following compounds will give racemic mixture on nucleophilic substitution by OH-ion?

- (i) CH_3 —CH—Br (ii) CH_3 —C— CH_3 (iii) CH_3 —CH— CH_2Br C_2H_5 C_2H_5 (b) (i), (ii), (iii) (c) (ii), (iii)(d) (i), (iii)


(a) (i)


97. Arrange the following in increasing order of rate of reaction towards nucleophilic substitution reaction.





- Which is the correct increasing order of boiling points of the following compounds?
 - 1-Iodobutane, 1-Bromobutane, 1-Chlorobutane, Butane
 - (a) Butane < 1-Chlorobutane < 1-Bromobutane < 1-Iodobutane
 - (b) 1-Iodobutane < 1-Bromobutane < 1-Chlorobutane < Butane
 - (c) Butane < 1-Iodobutane < 1-Bromobutane < 1-Chlorobutane
 - (d) Butane < 1-Chlorobutane < 1-Iodobutane < 1-Bromobutane
- 99. Which is the correct increasing order of boiling points of the following compounds?
 - 1-Bromoethane, 1-Bromopropane, 1-Bromobutane, Bromobenzene
 - (a) Bromobenzene < 1-Bromobutane < 1-Bromopropane < 1-Bromoethane
 - (b) Bromobenzene < 1-Bromoethane < 1-Bromopropane < 1-Bromobutane
 - 1-Bromopropane < 1-Bromobutane < 1-Bromoethane < Bromobenzene
 - (d) 1-Bromoethane < 1-Bromopropane < 1-Bromobutane < Bromobenzene
- Arrange the following in increasing order of rate of reaction towards nucleophilic substitution reaction.

- (a) (i) < (ii) < (iii) (b) (ii) < (i) < (iii) (c) (iii) < (i) < (ii) < (ii) (d) (i) < (iii) < (iii) 101. $C_6H_6 + (CH_3)_2CHCH_2Cl \xrightarrow{Anhy.AlCl_3} A$

The product 'A' is

- (a) cumene
- (b) n-butyl benzene (c) $CH_3CH_2CH(CH_3)_2$ (d) t-butyl benzene
- Chlorobenzene on reaction with acetic anhydride in presence of Anhy. AlCl₃ will give
 - (a) 4-chloro acetophenone

(b) 4-chlorotoluene

(c) 3-chloro acetophenone

- (d) m-chlorotoluene
- The reaction of iodobenzene with copper powder is known as
 - (a) Sandmeyer reaction

(b) Ullmann reaction

(c) Fittig reaction

- (d) Wurtz reaction
- Which of the following sequence would yield m-nitrochlorobenzene (B) from benzene?
 - (a) $C_6H_6 \xrightarrow{H_2SO_4\backslash HNO_3} A \xrightarrow{Anhy. FeCl_3/Cl_2} B$
 - (b) $C_6H_6 \xrightarrow{H_2SO_4\backslash HNO_3} B$
 - (c) $C_6H_6 \xrightarrow{Cl_2} A \xrightarrow{HNO_3} B$
 - (d) $C_6H_6 \xrightarrow{CH_3COCl} A \xrightarrow{HNO_3} B$
- 105. Which of the following nucleophiles favours S_N^2 mechanism?
 - (a) CN⁻
- $(b) \mathbf{F}^-$
- (c) OH⁻
- $(d) NO_3^-$

Racemisation occurs in [CBSE 2020 (56/3/1)] (b) $S_N 1$ reaction (a) S_N 2 reaction (d) $S_N 2$ reaction as well as $S_N 1$ reaction (c) Neither S_N^2 nor S_N^1 reactions Alkyl halides on reaction with magnesium in presence of dry ether forms (b) alkene (c) grignard's reagent (d) magnesium halide (a) alkyne Ethyl alcohol gives ethyl chloride with the help of (c) Cl₉ (d) SOCl₂ (b) NaCl (a) KCl 109. Alkyl halide + Mg \longrightarrow (A) $\xrightarrow{\text{Boil}}$ Propane The alkyl halide is (a) isopropyl chloride (b) ethyl bromide (c) t-butyl chloride (d) n-butyl chloride 110. $C_2H_5C1 \xrightarrow{KNO_2} X$; Here X is (a) C_9H_5 —O—N=O (b) C_2H_5 —N=O (c) C_9H_5 — NO_9 (d) None of these 111. The IUPAC name of vinyl chloride is (a) 1-chloroethane (b) 1-chloroethene (c) 3-chloropropene (d) 1-chloropropene Anti-Markovnikov addition of HBr is not observed in (b) but-1-ene (c) but-2-ene (d) pent-2-ene (a) propene 113. The reaction conditions leading to the best yield of C₂H₅Cl are (a) $C_2H_6 + Cl_2 \xrightarrow{\text{uv light}}$ (b) $C_2H_6 + Cl_2 \xrightarrow{\text{Dark}}$ (Excess) (d) $C_2H_6 + Cl_2 \xrightarrow{\text{uv light}}$ (c) $C_2H_6 + Cl_9 \xrightarrow{\text{uv light}}$ (Excess) 114. Only two isomeric monochloroderivatives are possible for (b) 2, 4-dimethylpentane (a) n-hexane (d) 2-methylpropane (c) benzene 115. n-propyl bromide on treatment with ethanolic KOH produces (d) propanol (a) propane (b) propene (c) propyne 116. S_N^2 mechanism proceed through the formation of (a) carbonium ion (b) transition state (c) free radical (d) carbanion 117. The correct IUPAC name for H₃C—CH—CH₂—CH₂—Cl is (b) 1-chloro-3-ethylbutane (a) 1-chloro-3-methylpentane (c) 3-methyl-1-chloropentane (d) 3-ethyl-1-chlorobutane 118. Arrange the following compounds in order of increasing dipole moment: Toluene (I); m-Dichlorobenzene (II); o-Dichlorobenzene (III); p-dichlorobenzene (IV). (a) I < IV < II < III(b) IV < I < II < III(c) IV < I < III < II(d) IV < II < I < III119. $C_6H_6 + MgBr \longrightarrow C_6H_5MgBr \xrightarrow{D_2O}$ 'B' The product 'B' is (a) C_6H_5OH (b) C₆H₅OD (c) C_6H_6 $(d) C_6H_5D$ Which of the following reaction is most suitable for the preparation of n-propyl benzene?

92 | Chemistry-XII: Term-1

(a) Friedel craft's reaction

Wurtz-Fittig reaction

(b) Wurtz reaction

(d) Grignard reaction

In order to convert chlorobenzene to phenol, the reagents needed are

(a) NaNO₉/HCl and dil HCl

(b) NaOH and dil HCl

(c) NaOH and H₂O

(d) conc. H₉SO₄ and H₉O

The conversion of an alkyl halide into an alcohol by aqueous NaOH is classified as

[CBSE 2020 (56/5/1)]

- (a) A dehydrohalogenation reaction
- (b) A substitution reaction

An addition reaction

(d) A dehydration reaction

Answers

1. (c)	2. (a)	3. (b)	4. (b)	5. (c)	6. (b)	7. (b)	8. (a)
9. (c)	10. (b)	11. (a)	12. (b)	13. (b)	14. (b)	15. (a)	16. (b)
17. (c)	18. (<i>d</i>)	19. (c)	20. (b)	21. (c)	22. (a)	23. (b)	24. (a)
25. (c)	26. (<i>d</i>)	27. (a)	28. (a)	29. (a)	30. (b)	31. (a)	32. (<i>d</i>)
33. (<i>d</i>)	34. (a)	35. (<i>b</i>)	36. (a)	37. (<i>d</i>)	38. (a)	39. (c)	40. (b)
41. (<i>d</i>)	42. (c)	43. (a)	44. (<i>d</i>)	45. (a)	46. (d)	47. (d)	48. (c)
49. (<i>d</i>)	50. (<i>d</i>)	51. (c)	52. (<i>d</i>)	53. (<i>d</i>)	54. (c)	55. (<i>b</i>)	56. (c)
57. (<i>d</i>)	58. (c)	59. (a)	60. (<i>b</i>)	61. (c)	62. (d)	63. (c)	64. (b)
65. (c)	66. (a)	67. (b)	68. (<i>d</i>)	69. (<i>d</i>)	70. (c)	71. (b)	72. (b)
73. (c)	74. (a)	75. (a)	76. (<i>b</i>)	77. (b)	78. (<i>d</i>)	79. (c)	80. (a)
81. (c)	82. (<i>b</i>)	83. (c)	84. (c)	85. (<i>b</i>)	86. (a)	87. (<i>d</i>)	88. (a)
89. (<i>a</i>)	90. (a)	91. (a)	92. (b)	93. (b)	94. (a)	95. (<i>b</i>)	96. (a)
97. (c)	98. (a)	99. (<i>d</i>)	100. (c)	101. (<i>d</i>)	102. (a)	103. (b)	104. (a)
105. (a)	106. (b)	107. (c)	108. (<i>d</i>)	109. (a)	110. (a)	111. (b)	112. (c)
113. (a)	114. (<i>d</i>)	115. (b)	116. (b)	117. (a)	118. (b)	119. (<i>d</i>)	120. (c)
121. (b)	122. (b)						

CASE-BASED QUESTIONS

1. Read the given passage and answer the questions that follow.

[CBSE Question Bank]

Nucleophilic substitution reaction of haloalkane can be conducted according to both S_N1 and S_N2 mechanisms. However, which mechanism it is based on is related to such factors as the structure of haloalkane, and properties of leaving group, nucleophilic reagent and solvent.

Influences of halogen: No matter which mechanism the nucleophilic substitution reaction is based on, the leaving group always leave the central carbon atom with electron pair. This is just the opposite of the situation that nucleophilic reagent attacks the central carbon atom with electron pair. Therefore, the weaker the alkalinity of leaving group is, the more stable the anion formed is and it will be more easier for the leaving group to leave the central carbon atom; that is to say, the reactant is more easier to be substituted. The alkalinity order of halogen ion is $I^- < Br^- < Cl^- < F^-$ and the order of their leaving tendency should be $I^- > Br^- > Cl^- > F^-$. Therefore, in four halides with the same alkyl and different halogens, the order of substitution reaction rate is RI > RBr > RCl > RF. In addition, if the leaving group is very easy to leave, many carbocation intermediates are generated in the reaction and the reaction is based on S_N1 mechanism. If the leaving group is not easy to leave, the reaction is based on S_N2 mechanism.

Influences of solvent polarity: In S_N 1 reaction, the polarity of the system increases from the reactant to the transition state, because polar solvent has a greater stabilizing effect on the transition state than the reactant, thereby reduce activation energy and accelerate the reaction. In S_N2 reaction, the polarity of the system generally does not change from the reactant to the

transition state and only charge dispersion occurs. At this time, polar solvent has a great stabilizing effect on Nu than the transition state, thereby increasing activation energy and slow down the reaction rate. For example, the decomposition rate (S_N1) of tertiary chlorobutane in 25°C water (dielectric constant 79) is 300000 times faster than in ethanol (dielectric constant 24). The reaction rate (S_N2) of 2-bromopropane and NaOH in ethanol containing 40% water is twice slower than in absolute ethanol. In a word, the level of solvent polarity has influence on both S_N1 and S_N2 reactions, but with different results. Generally speaking, weak polar solvent is favourable for S_N2 reaction, while strong polar solvent is favourable for S_N1 reaction, because only under the action of polar solvent can halogenated hydrocarbon dissociate into carbocation and halogen ion and solvents with a strong polarity is favourable for solvation of carbocation, increasing its stability. Generally speaking, the substitution reaction of tertiary haloalkane is based on S_N1 mechanism in solvents with a strong polarity (for example, ethanol containing water).

(Ding, Y. (2013). A Brief Discussion on Nucleophilic Substitution Reaction on Saturated Carbon Atom. In Applied Mechanics and Materials (Vol. 312, pp. 433-437). Trans Tech Publications Ltd.)

The	following questions are multiple choice quest	ions	s. Choose the most af	ppropriate answer:				
(i)	(i) S _N 1 mechanism is favoured in which of the following solvents:							
	(a) benzene (b) carbon tetrachloride	2	(c) acetic acid	(d) carbon disulphide				
(ii)	Nucleophilic substitution will be fastest in	cas	e of:					
	(a) 1-Chloro-2,2-dimethylpropane	(<i>b</i>)	1-Iodo-2,2-dimethy	ylpropane				
	(c) 1-Bromo-2,2-dimethylpropane	(<i>d</i>)	1-Fluoro-2,2-dimet	hylpropane				
iii)	$i)$ $S_N 1$ reaction will be fastest in which of the following solvents?							
	(a) Acetone (dielectric constant 21)	(b) Ethanol (dielectric constant 24)						
	(c) Methanol (dielectric constant 32)	(d)	Chloroform (dielec	tric constant 5)				
(iv)	Polar solvents make the reaction faster as t	hey	7:					
	(a) destabilize transition state and decrease the activation energy							
	(b) destabilize transition state and increase the activation energy							
	(c) stabilize transition state and increase the activation energy							
	$\left(d\right)$ stabilize transition state and decrease the activation energy							
(v)	S _N 1 reaction will be fastest in case of:							
	(a) 1-Chloro-2-methylpropane	(h)	1-Iodo-2-methylpr	onane				

Answers

 $(i) (c) \qquad (ii) (b) \qquad (iii) (c) \qquad (iv) (d) \qquad (v) (b)$

2. Read the passage given below and answer the following questions:

The polarity of C—X bond is responsible for the nucleophilic substitution reactions of alkyl halides which mostly occur by S_N1 and S_N2 mechanisms. The rates of S_N1 reaction are governed by the stability of intermediate carbocations while that of S_N2 reactions are governed by steric factors. Chirality has a great role in understanding the mechanism of S_N1 and S_N2 reactions. S_N1 reactions of chiral alkyl halides are accompanied by racemisation. Whereas S_N2 reactions are characterised by inversion of configuration.

(Source: Smeltzer, W.W., & Young, D.J. (1975). Oxidation properties of transition metals.

Progress in Solid State Chemistry, 10, 17-54.)

(d) 1-Iodobutane

Chemistry-XII: Term-1

(c) 1-Chlorobutane

The following questions are multiple choice questions. Choose the most appropriate answer:

- (i) Alkyl halides undergoing nucleophilic bimolecular substitution involve
 - (a) retention of configuration (b) racemic mixture
 - (c) inversion of configuration (d) formation of carbocation
- (ii) Which of the following alkyl halides will undergo S_N1 reaction most readily?
- (a) $(CH_3)_3C$ —F (b) $(CH_3)_3C$ —Cl (c) $(CH_3)_3C$ —Br (d) $(CH_3)_3C$ —I

(iii) In the following reaction, 'A' is

$$CH_3 CH_2 CI \xrightarrow{KNO_2}$$
 'A'

- (a) CH_3CH_2ONO (b) $CH_3CH_2NO_2$ (c) CH_3CH_2OH (d) CH_3CH_2KO

- (iv) An optically active compound having molecular formula C₇H₁₅Br reacts with aq. KOH to give a racemic mixture of products. The compound is

$$\begin{array}{c} \text{CH}_3 \\ (c) \text{ CH}_3 — \text{CH}_2 — \text{CH}_2 — \text{CH}_2 \text{CH}_3 \\ \\ \text{Br} \end{array} \qquad \begin{array}{c} \text{CH}_3 \\ (d) \text{ CH}_3 \text{CH}_2 \text{CH}_2 - \text{C} - \text{CH}_2 \text{Br} \\ \\ (d) \text{ CH}_3 \text{CH}_2 \text{CH}_2 - \text{C} - \text{CH}_2 \text{Br} \\ \\ \text{CH}_3 \end{array}$$

Answers

- (i)(c)
- (ii)(d)
- (iii)(a)
- (iv)(c)

ASSERTION-REASON QUESTIONS

In the following questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

- Assertion and reason both are correct statements and reason is correct explanation for assertion.
- Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- Assertion is correct statement but reason is wrong statement.
- Assertion is wrong statement but reason is correct statement.
- Assertion (A): Phosphorus chlorides (tri and penta) are preferred over thionyl chloride for the preparation of alkyl chlorides from alcohols.
 - (R): Phosphorus chlorides give pure alkyl halides.
- 2. Assertion (A): Boiling points of alkyl halides decrease in the order

$$R-I > R-Br > R-Cl > R-F$$
.

[CBSE 2020 (56/2/1)]

- (R): Van der Waals forces decrease with increase in the size of halogen atom.
- 3. Assertion (A): KCN reacts with methyl chloride to give methyl isocyanide
 - (R): CN is an ambident nucleophile.
- Assertion (A): tert-Butyl bromide undergoes Wurtz reaction to give 2, 2, 3, 3-tetramethylbutane.
 - Reason (R): In Wurtz reaction, alkyl halides react with sodium in dry ether to give hydrocarbon containing double the number of carbon atoms present in the halide.
- **5.** Assertion (A): Hydrolysis of (–)-2-bromooctane proceeds with inversion of configuration.
 - (R): This reaction proceeds through the formation of a carbocation. Reason

- 6. Assertion (A): 3° alkyl halides are most reactive towards S_N1 reaction.
 - **Reason** (R): In S_N 1 reaction, the rate of the reaction depends only on the concentration of alkyl halide.
- 7. Assertion (A): Presence of a nitro group at ortho or para position increases the reactivity of haloarenes towards nucleophilic substitution.
 - Reason (R): Nitro group, being an electron withdrawing group decreases the electron density over the benzene ring.
- 8. Assertion (A): Nitration of chlorobenzene leads to the formation of m-nitrochlorobenzene.
 - **Reason** (R): $-NO_2$ group is a m-directing group.
- 9. Assertion (A): It is difficult to replace chlorine by –OH in chlorobenzene in comparison to that in chloroethane.
 - Reason (R): Chlorine-carbon (C—Cl) bond in chlorobenzene has a partial double bond character due to resonance.
- 10. Assertion (A): In monohaloarenes, further electrophilic substitution occurs at ortho and para positions.
 - Reason (R): Halogen atom is a ring deactivator.
- 11. Assertion (A): Aryl iodides can be prepared by reaction of arenes with iodine in the presence of an oxidising agent.
 - Reason (R): Oxidising agent oxidises I₉ into HI.

Answers

- **1.** (b) **2.** (c) **3.** (d) **4.** (a) **5.** (
- **4.** (a) **5.** (c) **6.** (b) **7.** (a) **8.** (d)
- **9.** (a) **10.** (b) **11.** (c)

HINTS/SOLUTIONS OF SELECTED MCQS

- 9. (c) With increase in surface area boiling point increases.
- 14. (b) The carbon atom having four different group is called asymmetric carbon atom.
- 18. (d) The reactivity of the halides are R-I> R-Br>R-Cl>>R-F. Hence, (CH₈)₈C—I will undergo the reaction most readily.
- **22.** (a) Free rotation around carbon-carbon bond takes place easily in alkanes. Now ethane and hexachloroethane both are alkanes, but in hexachloroethane bulky chlorine atom is present due to which rotation of C—C hindered.

Both (A) and (B) exists as a pair of geometrical isomers. Therefore, there are 2 structural and 4 configurational isomers.

- **24.** (a) The Cl—C—Cl angle in 1, 1, 2, 2-tetrachloroethene (carbon is sp^2 hybridised) and tetrachloromethane (carbon is sp^3 hybridised) will be about 120° and 109.5° respectively.
- 96 | Chemistry-XII: Term-1

26.
$$(d)$$
 \bigcirc $+$ $3Cl_2$ $\xrightarrow{Sunlight}$ \bigcirc $+$ $3HCl$ \xrightarrow{NaOH} \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc Benzoic acid

29. (a)
$$CH_3CH=CH_2 + HC1 \xrightarrow{Benzoyl} CH_3CHCH_3$$
Propene C1
2-Chloropropane

[: Peroxide effect is not observed with HF, HCl and HI]

30. (b) Only H_3C = C will show geometrical isomerism because of presence of two different

$$CH_{3} \qquad CH_{3} \qquad CH_{3} \qquad CH_{3}$$

$$| \qquad | \qquad | \qquad | \qquad |$$

$$CH_{3} - C - CH_{2} + HBr \longrightarrow CH_{3} - C - CH_{3} + H_{3}C - HC - CH_{2}Br$$

$$| \qquad | \qquad | \qquad |$$

$$2 - \text{methylpropene} \qquad Br \qquad CH_{3}$$

$$2 - Bromo - 2 - \text{methylpropane} \qquad (Major) \qquad (Minor)$$

$$| \qquad | \qquad | \qquad |$$

$$2 - Bromo - 2 - \text{methylpropane} \qquad (Minor)$$

All others are symmetrical alkenes.

groups on the same carbon atom.

33. (d)
$$\bigcirc$$
 + Br₂ \longrightarrow \bigcirc NaOH \bigcirc Br \bigcirc + CO₂ + AgBr \bigcirc Bromobenzene

(b) The intermediate formed during the addition of HCl to propene in the presence of peroxide 35. is CH₃ CH⁺ CH₃.

In case of HCl, peroxide has no effect. Secondary carbocation is formed as it is more stable than primary carbocation.

(a) Two enantiomeric pairs can be produced, i.e., 1-chloro-2-methylbutane and 2-chloro-3methylbutane.

The given reaction is undergoing substitution 100% inverse of configuration and is a one step reaction. Therefore, it follows S_N^2 mechanism (substitution nucleophilic bimolecular).

37. (d)
$$CH_3$$

$$H - C - Br$$

$$CH_3$$

$$CH_$$

(a) When $(CH_3)_3CMgBr$ reacts with D_2O the C-Mg bond donates its electron pair to a deuterium 38. atom, forming $(CH_3)_3 C-D$ and Mg(OH)Br.

This occurs because the C that is bonded to Mg is strongly nucleophilic and can attack a region of positive charge density such as the deuterium atom in a water molecule.

Haloalkanes and Haloarenes 97

(Minor)

- **41.** (d) NO₂ group shows -M effect due to which electrons are withdrawn from ortho and para position which makes the benzene ring more prone to nucleophilic substitution reaction and hence replacement of Cl can be done easily.
- **42.** (c) The more loosely held electrons are open to attack by electrophiles. Hence, the characteristic reaction of benzene is electrophilic substitution reaction.
- **44.** (d) Formation of carbocation occurs:

$$\begin{array}{c} H \\ C_6H_5-C-Cl \\ CH_3 \\ (+)\text{-}2\text{-}chloro\text{-}2\text{-}phenylethane} \end{array} + \begin{array}{c} + \text{SbCl}_5 \\ - \text{C} \\ - \text{C}$$

45. (a) The order of reactivity of alkyl halide towards S_N^2 mechanism follows the order:

$$CH_3Br > (CH_3)_2CHBr > (CH_3)_3C-Br$$

Thus, reaction (a) is a best example of S_N 2 reaction.

- **46.** (d) p-Dichlorobenzene has symmetrical structure, so it fits closely in the crystal lattice. Therefore, it has highest melting point.
- 47. (d) Benzyl alcohol does not have CH₃CO⁻ group or CH₃CH₂O⁻ group so it will not give positive iodoform test.

- **49.** (d) More the number of alkyl groups, more will be the stability of carbocation and easier will be the reaction.
- 51. (c) A nucleophile is a chemical species that donates an electron pair to an electrophile to form a chemical bond in relation to a reaction. So, less the electronegativity more the nucleophilicity of ion. Thus, CH₃ has the highest nucleophilicity.

54. (c)
$$CH_3CHCH_2 \xrightarrow{2NaNH_2} CH_3 \longrightarrow CH_3$$

$$\xrightarrow{C_2H_5B_\Gamma}$$
 CH₃—C \equiv CCH₂CH₃

55. (b)
$$CH_3$$
 CCl_3

Toluene

Toluene

$$CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$CII_3$$

$$CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$CII_3$$

$$CCl_3$$

$$CCl_4$$

$$CCl_5$$

$$CCl_5$$

$$CCl_5$$

$$CCl_7$$

$$CC$$

56. (c)
$$H_3C$$
— CH_2 — C — CH — CH_3 — H_2 — CH_2 — CH — CH_2 C H_3

Cl

3-chloro-pent-2-ene
'A'

Optically inactive

Here, the molecule has one double bond, so there is one geometrical centre and one chiral centre. Therefore, number of stereocentres(n) = 2 and number of stereoisomers $= 2^2 = 4$

(a) is an example of arylalkyl halide as halogen atom is attached to the side chain Benzyl chloride

of the carbon atom of benzene ring.

61. (c)
$$CHI_3 \xrightarrow{3KOH} [CH(OH)_3] \xrightarrow{-H_2O} HCOOH \xrightarrow{KOH} HCOOK$$

63. (c) Cl Cl
$$H$$
—C—Cl + HCl \xrightarrow{Zn} H—C—Cl H —Cl (Methylene chloride)

65. (c)
$$HC \equiv CH + Br_2 \xrightarrow{CCl_4} HC = CH$$
Ethyne

Br Br
1,2-dibromoethene

66. (a)
$$R'X$$
 + RCOOAg \longrightarrow RCOOR' + AgX Ester

67. (b) HOCl + HOCl
$$\longrightarrow$$
 H₂O + OCl⁻+Cl⁺

CH₃—CH=CH₂ + $\stackrel{+}{\text{Cl}}$ \longrightarrow CH₃ $\stackrel{+}{\text{CH}}$ —CH₂Cl

69. (d) The number of possible isomers is 6:

70. (c) In case of HI, HF and HCl, one of the step is endothermic while in case of HBr, both the steps are exothermic and therefore HI, HF and HCl does not undergo anti Markovnikov's addition in presence of peroxide.

71. (b)
$$CH_3CH_2CH_2Br \xrightarrow{conc. alc. NaOH} CH_3 \longrightarrow CH_3 \longrightarrow CH_2 CH_2 \xrightarrow{Br/acetic acid} CH_3CH \longrightarrow CH_3$$

73. (c) The reaction in which chloroarenes can be prepared by treating benzene diazonium chloride with cuprous chloride is known as Sandmeyer's reaction.

74. (a)
$$CH_3CH_2CH_2CI + aq.KOH \longrightarrow CH_3CH_2CH_2OH + KCI$$

Propanol

*Propanol**

75. (a) The reaction
$$\bigcirc$$
 $\stackrel{\text{CH}_3}{\bigcirc}$ $\stackrel{\text{light}}{\bigcirc}$ \bigcirc $\stackrel{\text{CH}_2\text{Cl}}{\bigcirc}$ + HCl is a free radical substitution reaction.

This can be explained as

Step I:
$$Cl_2 \xrightarrow{Sunlight} 2Cl$$

Step II:
$$CH_3$$
 CH_3 CH_2 CH_2 CH_3

Step III:
$$\dot{C}H_2 + \dot{C}I \longrightarrow \dot{C}H_2C$$

The other given reactions involves the formation of ions.

- 76. (b) The dipole moment decreases on decreasing the electronegativity of the halogen from Cl to I. Moreover, the CH₃F has lower dipole moment than CH₃Cl because of very small size of F which outweighs the effect of greater electronegativity.
- 77. (b) In Wurtz-Fittig reaction, aryl halide is heated with alkyl halide in the presence of sodium in dry ether. Here, halogen atom is replaced by alkyl group and alkylarene is formed.

78. (d)
$$CH_3Br + C_2H_5Br + 2Na \xrightarrow{Dry \, ether} CH_3CH_2CH_3 + 2NaBr$$

$$CH_3Br + CH_3Br + 2Na \xrightarrow{Dry \, ether} CH_3 - CH_3 + 2NaBr$$

$$Ethane$$

$$C_2H_5Br + C_2H_5Br + 2Na \xrightarrow{Dry \, ether} CH_3CH_2CH_2CH_3 + 2NaBr$$

$$Butane$$

- (c) In chlorobenzene, chlorine group is attached to sp^2 hybridised carbon and in methyl chloride it is attached to sp^3 hybridised carbon so the C—Cl bond is shorter and stronger in chlorobenzene.
- 81. (c) $CH_2CH_3I + Mg \xrightarrow{dry ether} CH_3CH_2MgI$ Ethylmagnesium iodide

84. (c)
$$C_2H_5OH \xrightarrow{SOCl_2} C_2H_5Cl \xrightarrow{KCN(alc.)} C_2H_5CN \xrightarrow{2OH^-/H^+} C_2H_5COOH$$

85. (b)
$$CH_3CH_2CH_2Cl \xrightarrow{alc. KOH} CH_3 - CH = CH_2 \xrightarrow{HBr}$$
 1-chloropropane

86. (a)
$$CH_3$$
— CH = CH — CH_3 — $CH_$

$$\xrightarrow{\operatorname{Br}^{-}} \operatorname{CH}_{3}\operatorname{CH}_{2}\operatorname{CH}_{3}$$

$$\operatorname{CH}_{3}$$

88. (a)
$$NH_2$$
NaNO₂ + HC1
 $273-278K$
 NH_2
Cu₂Cl₂
(Sandmeyer's reaction)

(Sandmeyer's reaction)

(a) The halogens X and I are exchanging their position in this reaction:

$$RX + NaI \longrightarrow RI + NaX$$

(a) $CH_3CH_2CH_2CH_3 \longrightarrow CH_3CH_2CH_2CH_2Cl + CH_3CH_2CHClCH_3$ Cl₂ in presence of UV light gives monochlorinated isomeric products via free radical mechanism.

94. (a)
$$CH_2Br$$
 CH_2 CH_2OH CH_2

- **95.** (b) They are sp^3 hybridised carbon and attached to different substituents. Assymetric carbon atom is the chiral carbon which is sp^3 hybridised and attached to different substituents. Here, carbon atom (b) and (c) are assymetric.
- 96. (a) For racemic mixture, the compound should contain at least one chiral carbon in the compound. As (a) contains chiral carbon so it forms racemic mixture.
- **97.** (c) Electron withdrawing group increases the rate of reaction towards nucleophilic substitution reaction. Its effect is more at ortho than meta position
- 98. (a) Boiling point of chlorides, bromides and iodides are higher than those of parent hydrocarbon due to greater polarity and higher molecular mass. Thus, the correct increasing order is Butane < 1-Chlorobutane < 1-Bromobutane < 1-Iodobutane

101. (d)
$$\bigcirc + (CH_3)_2CHCH_2Cl \xrightarrow{Anhy. AlCl_3} \bigcirc CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

105. (a) Stronger the attacking nucleophile, higher is the reactivity. The order of nucleophilic strength follows the order $CN^- > OH^- > F^- > NO_3^-$. Thus, CN^- favours S_N^2 mechanism.

t-butyl benzene

- 108. (d) $CH_3CH_2OH + SOCl_2$ $\xrightarrow{Pyridine}$ $CH_3CH_2Cl + SO_2\uparrow + HCl \uparrow$ Ethyl alcohol Thionyl chloride Chloroethane
- 109. (a) Since alkane formed is propane, therefore the alkyl halide may be isopropyl chloride.

- 110. (a) $C_2H_5Cl \xrightarrow{KNO_2} C_2H_5$ —ON=O + KCl Chloroethane (X)
- 113. (a) $C_2H_6 + Cl_2 \xrightarrow{UV \text{ light}} C_2H_5Cl + HCl$ (excess)

In this reaction, if we use Cl₂ in excess, then mono, di, tri and tetra chloroalkanes are formed as product and if ethane is used in excess, then ethyl chloride forms as major product.

115. (b) Elimination reaction occurs.

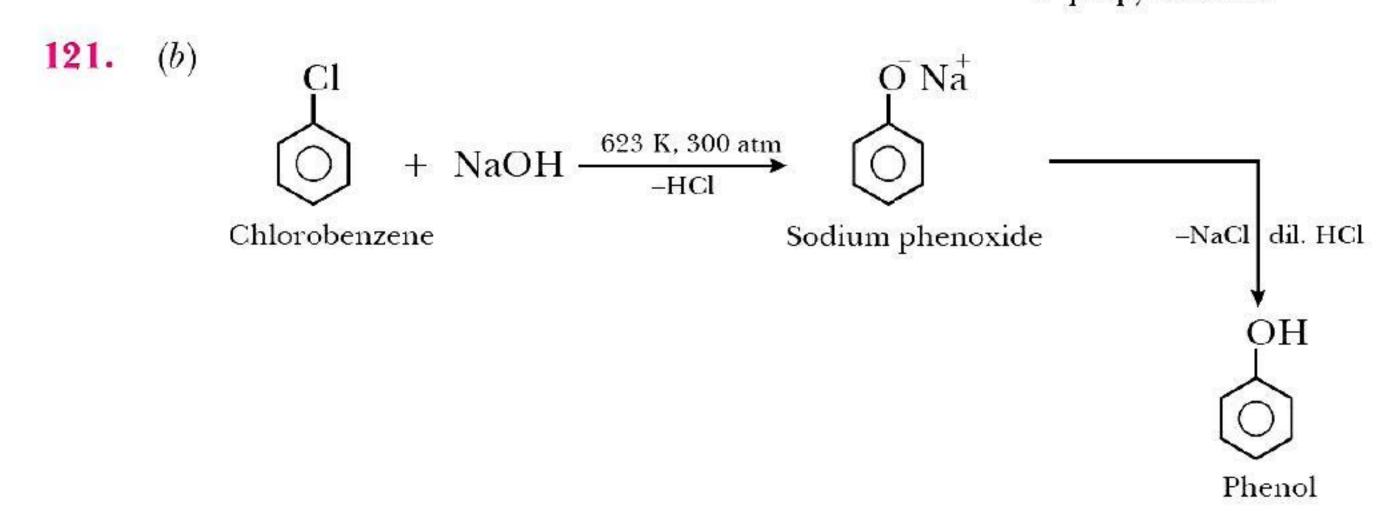
117. (a) The correct IUPAC name of the given compound is

$$H_3$$
C—CH—CH₂—CH₂—Cl

 CH_2 CH₃

1-chloro-3-methylpentane

118. (b) CH₃ C1 C1 C1 C1


Toluene m-dichlorobenzene o-dichlorobenzene C1

CH₃ is less
$$\theta = 120^{\circ}$$
 $\theta = 60^{\circ}$ $\theta = 180^{\circ}$ Maximum p-dichlorozene than Cl dipole moment It has zero dipole moment dipole moment dipole moment

So, the order is IV < I < II < III

119. (d)
$$C_6H_6 + MgBr \longrightarrow C_6H_5MgBr \xrightarrow{D_2O} C_6H_5D + Mg(OD)Br$$

(c) Wurtz-Fittig reaction: 120.

